
Introduction to Natural
Language Engineering / Part 11:
Parsing & Logical Representation

Udo Kruschwitz / Bernd Ludwig
Lehrstuhl für Informationswissenschaft

WS 2020/21

Einführung in die
Informationslinguistik I / Teil 11:

Syntaxanalyse & Einfache Satzsemantik

Udo Kruschwitz / Bernd Ludwig
Lehrstuhl für Informationswissenschaft

WS 2020/21

Module Overview

• Motivation

• Regular expressions

• Basic statistical natural language processing

• Part-of-speech tagging

• Context-free grammars

• Parsing principles

• Complexity

• Semantics

• Applications: IE, IR, QA, …
 3

Module Overview (more specific)

• Motivation

• Regular expressions

• Basic statistical natural language processing

• Part-of-speech tagging

• Text classification

• Lexical semantics (embeddings)

• Context-free grammars

• Parsing principles + Complexity

• Applications: IE, IR, QA, …
 4

Following on from last time …

 5

• Formal grammars can be used to describe a language

• How do we find out whether a sentence is part of that
language?

• That’s what a parser will do …

Parsing

 6

Parsing: Overview

 7

• Parser takes a grammar and an input string and returns
possible analyses of that string

• Parsing is a search problem

• Three criteria for evaluating parsers:

‣ Correctness

‣ Completeness

‣ Efficiency

• Parsing strategies:

‣ Top-down vs. Bottom-Up

‣ Breadth-first vs. Depth-first

Top-Down Parsing - Strategy

 8

• Start from S (goal-driven)

• Look for rules that have S as left-hand side and
replace S by the right-hand side of the rule

• Progressively refine structures by performing this
for the resulting string replacing non-terminals by
right-hand sides of rules

• Finished when the result finally matches the input
sentence

Top-Down Parsing -
Example Grammar

 9

Top-Down Parsing - Example

 10

Top-Down Parsing - Example

 11

Top-Down Parsing - Example

 12

Top-Down Parsing - Example

 13

Top-Down Parsing - Example

 14

Top-Down Parsing - Example

 15

Top-Down Parsing - Example

 16

Top-Down Parsing - Example

 17

Top-Down Parsing - Example

 18

Top-Down Parsing - Example

 19

Top-Down Parsing - Example

 20

Top-Down Parsing - Problems

 21

• Left recursion

• Structural ambiguity

Bottom-Up Parsing - Strategy

 22

• Start from word level (data-driven)

• Progressively building up structures

• Find strings in the input that are right-hand sides
of rules and can be replaced by the corresponding
left-hand side

• Finished when the result is S

Bottom-Up Parsing - Example

 23

Bottom-Up Parsing - Example

 24

Bottom-Up Parsing - Example

 25

Bottom-Up Parsing - Example

 26

Bottom-Up Parsing - Example

 27

Bottom-Up Parsing - Example

 28

Bottom-Up Parsing - Example

 29

Bottom-Up Parsing - Example

 30

Bottom-Up Parsing - Example

 31

Bottom-Up Parsing - Example

 32

Bottom-Up Parsing - Problems

 33

• ε-production

• Lexical ambiguity

Chart Parsing - Motivation

 34

• Problems with top-down and bottom-up parsers,
e.g.:

‣ Left recursion

‣ Ambiguity (structural, lexical category etc.)

‣ Inefficiency (backtracking)

Chart Parsing - Strategy

 35

• Record all partial parses

• Build up subtrees and keep them in a table (chart)

• Keep only one instance of each chart entry

• Chart entries are never deleted

• No backtracking

• End of the sentence: chart contains all possible
parses

• Example algorithms: Earley algorithm (top-down);
CKY algorithm (bottom-up)

Earley Algorithm - Overview

 36

• Left-to-right top-down parsing

• Chart entries (dotted rules) consist of:

‣ Subtree corresponding to a grammar rule

‣ Information about how much of this rule has been found

‣ Position of subtree in respect to input

• Three operators:

‣ Predictor

‣ Scanner

‣ Completer

• See detailed examples in the book

Earley Algorithm -
Examples (Chart Entries)

 37

Earley Algorithm - Example

 38

Earley Algorithm - Example
(Step by Step)

 39

Earley Algorithm - Example
(Step by Step)

 40

• Try it out yourself! (via NLTK)

• Also try the bottom-up chart parser (CKY)

Adding Probabilities to our Grammar

 41

Probabilistic Parsing: Motivation

 42

• Ambiguity, but some parses are more likely than
others

• Augment context-free grammars with additional
knowledge (probabilities for each rule)

• Where do we get these probabilities from?

• Find the most likely parse

Probabilistic Parsing: Example

 43

Probabilistic Parsing

 44

Probabilistic Parsing

 45

• Obtaining Probabilities

‣ Analyze annotated corpus (treebank) or

‣ Create statistics by parsing sample corpus

• Parsing of Probabilistic CFG

‣ Same principles as with any CFG

‣ Calculate probabilities during parsing

‣ Optimization (e.g. pruning of unlikely parses)

Probabilistic Parsing

 46

• Problems

‣ Usual problems with statistical approaches

‣ Independence assumption

‣ Structural dependencies

‣ Lexical dependencies

• Solutions

‣ Incorporate additional knowledge

‣ Probabilistic lexicalized CFG

‣ Chart parsers can easily be adjusted (see textbook)

Probabilistic Parsing: Summary

 47

• Probabilities can help reducing the ambiguity
problem

• Combination of symbolic and stochastic ideas

• Chart parsers can easily be adjusted (see textbook)

• There is a lot more to probabilistic parsing and we
have only touched the surface

Adding Semantics

 48

Meaning Representation

 49

• So far concerned with syntax (structure)

• How do we capture semantics (meaning)?

Meaning Representation (Example)

 50

Meaning Representation (Examples)

 51

Semantics: What do we need?

 52

• Represent meaning of natural language (semantics)

• Meaning of words and their relations (lexical semantics)

• Meaning of phrases, sentences, questions
(compositional semantics)

• Logical form as a result of semantic interpretation

Semantics: What do we need it for?

 53

• Question answering (QA) systems (recall MIT START)

• Query databases (knowledge bases)

• Precise data representation

• Dialogue understanding

• Intelligent coffee machine?

• …

Semantics: Requirements

 54

• Verifiability, e.g.:

• Unambiguous representation

• Canonical form, e.g.:

• Inference and variables

• Expressiveness

• Combine syntax and semantics

First Order Predicate Calculus (FOPC)

 55

• Mathematical formalism to represent meaning

• Represent objects, properties of objects and relations among
them (set of symbols and rules for combining them into terms)

• Inference rules

• Inference purely formal manipulation of symbols (no meaning
or interpretation assigned to symbols)

• Meaning introduced by referencing to objects

• Set of terms (axioms) to represent some world model

• Terms in world model are true

• All formulae are either true or false (in respect to the model)

FOPC: Elements

 56

FOPC: Examples

 57

Why is FOPC useful?

 58

• Tractable and well-understood

• Flexible, easy to use

• Sufficient for many (simple) applications

• Inference (e.g.modus ponens)

• Structure of language can be mapped onto FOPC
expressions, e.g. verbs + subcategorization

But …

 59

FOPC: Problems

 60

• Vague information

• Representation of belief

• Representation of events and time

• Discourse resolution

Problems with FOPC: Ways Out

 61

• Extensions to FOPC

• Higher-order logics

• Modal logics

Combining Syntax and Semantics

 62

• Syntax-driven semantic analysis

• Grammar rules combine syntax and semantics

• Semantics just an additional feature in feature-structure-
based grammar

• Lexical items and rules are associated with logical forms

• Semantic information is passed from children to parents

• Need extension of FOPC to handle “incomplete”
expressions: -calculus and complex terms to build
quasi-logical forms

λ

Examples

 63

Simplified Example Grammar

 64

Simplified Example Grammar

 65

Real Example: TR Discover by
Thomson Reuters

 66

• Natural language questions over complex datasets

• Combination of syntax and semantics

• Based on context-free grammars

• Use of FOPC to encode semantics

TR Discover: Sample Rules

 67

D. Song et al. “Natural Language Question Answering and Analytics for Diverse and
Interlinked Datasets”. Proceedings of NAACL-HLT 2015.

Problems (Compositional Approach)

 68

• Natural language is not mathematics

• Idioms

• Ambiguity, e.g. quantifier scoping

• Compositional approach does not tell us anything about
individual meaning of words

• Usual problems with symbolic approaches

Summary Meaning Representation

 69

• Expressing meaning of natural language is very
difficult

• FOPC can be a good approximation

• Other logics are needed to express phenomena
like time,beliefs etc.

• - calculus permits syntax-driven semantic analysisλ

Language and Complexity

 70

Language and Complexity:
Motivation

 71

• Complexity is a major issue in computer science

• The complexity of languages can be defined by the
type of grammar they require

• The Chomsky hierarchy defines four types of grammar
(the higher the complexity the lower the number)

• Certain constructions in languages require certain
types of grammar

• The types of grammar correspond to different types of
automata

• This allows reasoning about mathemetical complexity

Chomsky Hierarchy

 72

Grammars vs. Automata

 73

Grammars vs. Automata II

 74

Example 1: Right Linear Grammar

 75

Example 2: Context-Free Grammar

 76

Example 3: Context-Sensitive
Grammar

 77

Natural Languages in the
Chomsky Hierarchy

 78

• Are natural languages regular?

• Not really as they often come with patterns that
correspond to languages like

• Centre-embedding, for example, causes languages to
be non-regular:

‣ The student likes the Meetup.

‣ The student the student likes likes the Meetup.

‣ The student the student the student likes likes likes the Meetup.

• Certain natural languages are not even context-free

• Fair enough, this is all a bit hypothetical …

Complexity of Grammar Types

 79

• Measure the amount of work to decide whether a
string is in a given language or not

• Cost as a function of input length (n)

• Worst case scenarios

Complexity of Parsing

 80

• So far we looked at the decision problem

• Parsing is more complex

• Example:

• Number of possible parse trees for this grammar is
exponential

• Enumerating all possible parse trees therefore even
for type 3 grammars exponential

Summary

 81

• Languages can be defined by means of grammars
or automata

• Parsers return tree structure(s) of some input given
a grammar

• First-order predicate calculus is a basis for simple
meaning representation

• Knowledge about grammar allows to reason
about mathematical complexity

• All this is a knowledge-based approach, i.e. at the
other end of the spectrum of embeddings

Reading

 82

• Jurafsky and Martin (2020), chapters 13-15 and
Appendix C

• The third edition focuses on the CKY parser only, the
second edition has both Earley and CKY with running
examples

• Jurafsky and Martin (second edition), chapter 16
discusses complexity

• D. Song, F. Schilder, C. Smiley and C. Brew. “Natural
Language Question Answering and Analytics for
Diverse and Interlinked Datasets”. Proceedings of
NAACL-HLT 2015.

• See previous slide deck for links to parsers

