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Module Overview

• Motivation  

• Regular expressions 

• Basic statistical natural language processing 

• Part-of-speech tagging 

• Context-free grammars 

• Parsing principles 

• Complexity 

• Semantics 

• Applications: IE, IR, QA, …
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Module Overview (more specific)

• Motivation  

• Regular expressions 

• Basic statistical natural language processing 

• Part-of-speech tagging 

• Text classification  

• Lexical semantics (embeddings) 

• Context-free grammars 

• Parsing principles + Complexity 

• Applications: IE, IR, QA, …
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Following on from last time …
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• Formal grammars can be used to describe a language 

• How do we find out whether a sentence is part of that 
language?  

• That’s what a parser will do …



Parsing
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Parsing: Overview
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• Parser takes a grammar and an input string and returns 
possible analyses of that string 

• Parsing is a search problem 

• Three criteria for evaluating parsers:

‣ Correctness 

‣ Completeness 

‣ Efficiency 

• Parsing strategies:

‣ Top-down vs. Bottom-Up 

‣ Breadth-first vs. Depth-first



Top-Down Parsing - Strategy
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• Start from S (goal-driven) 

• Look for rules that have S as left-hand side and 
replace S by the right-hand side of the rule 

• Progressively refine structures by performing this 
for the resulting string replacing non-terminals by 
right-hand sides of rules 

• Finished when the result finally matches the input 
sentence



Top-Down Parsing -  
Example Grammar
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Example
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Top-Down Parsing - Problems
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• Left recursion 

• Structural ambiguity



Bottom-Up Parsing - Strategy
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• Start from word level (data-driven) 

• Progressively building up structures 

• Find strings in the input that are right-hand sides 
of rules and can be replaced by the corresponding 
left-hand side 

• Finished when the result is S



Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example

 28



Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Example
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Bottom-Up Parsing - Problems
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• ε-production 

• Lexical ambiguity



Chart Parsing - Motivation
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• Problems with top-down and bottom-up parsers, 
e.g.:

‣ Left recursion 

‣ Ambiguity (structural, lexical category etc.) 

‣ Inefficiency (backtracking)



Chart Parsing - Strategy
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• Record all partial parses 

• Build up subtrees and keep them in a table (chart) 

• Keep only one instance of each chart entry 

• Chart entries are never deleted 

• No backtracking 

• End of the sentence: chart contains all possible 
parses 

• Example algorithms: Earley algorithm (top-down); 
CKY algorithm (bottom-up)



Earley Algorithm - Overview
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• Left-to-right top-down parsing 

• Chart entries (dotted rules) consist of:

‣ Subtree corresponding to a grammar rule 

‣ Information about how much of this rule has been found 

‣ Position of subtree in respect to input 

• Three operators:

‣ Predictor 

‣ Scanner 

‣ Completer 

• See detailed examples in the book



Earley Algorithm -  
Examples (Chart Entries)
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Earley Algorithm - Example
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Earley Algorithm - Example 
(Step by Step)
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Earley Algorithm - Example 
(Step by Step)
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• Try it out yourself! (via NLTK) 

• Also try the bottom-up chart parser (CKY)



Adding Probabilities to our Grammar
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Probabilistic Parsing: Motivation
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• Ambiguity, but some parses are more likely than 
others 

• Augment context-free grammars with additional 
knowledge (probabilities for each rule) 

• Where do we get these probabilities from? 

• Find the most likely parse



Probabilistic Parsing: Example
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Probabilistic Parsing
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Probabilistic Parsing
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• Obtaining Probabilities

‣ Analyze annotated corpus (treebank) or 

‣ Create statistics by parsing sample corpus 

• Parsing of Probabilistic CFG

‣ Same principles as with any CFG 

‣ Calculate probabilities during parsing 

‣ Optimization (e.g. pruning of unlikely parses)



Probabilistic Parsing
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• Problems

‣ Usual problems with statistical approaches 

‣ Independence assumption 

‣ Structural dependencies 

‣ Lexical dependencies 

• Solutions

‣ Incorporate additional knowledge 

‣ Probabilistic lexicalized CFG 

‣ Chart parsers can easily be adjusted (see textbook)



Probabilistic Parsing: Summary
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• Probabilities can help reducing the ambiguity 
problem 

• Combination of symbolic and stochastic ideas 

• Chart parsers can easily be adjusted (see textbook) 

• There is a lot more to probabilistic parsing and we 
have only touched the surface



Adding Semantics 
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Meaning Representation
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• So far concerned with syntax (structure) 

• How do we capture semantics (meaning)?



Meaning Representation (Example)
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Meaning Representation (Examples)
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Semantics: What do we need?
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• Represent meaning of natural language (semantics) 

• Meaning of words and their relations (lexical semantics) 

• Meaning of phrases, sentences, questions 
(compositional semantics) 

• Logical form as a result of semantic interpretation



Semantics: What do we need it for?
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• Question answering (QA) systems (recall MIT START) 

• Query databases (knowledge bases) 

• Precise data representation  

• Dialogue understanding 

• Intelligent coffee machine? 

• …



Semantics: Requirements
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• Verifiability, e.g.: 

• Unambiguous representation 

• Canonical form, e.g.: 

• Inference and variables 

• Expressiveness 

• Combine syntax and semantics



First Order Predicate Calculus (FOPC)
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• Mathematical formalism to represent meaning 

• Represent objects, properties of objects and relations among 
them (set of symbols and rules for combining them into terms) 

• Inference rules 

• Inference purely formal manipulation of symbols (no meaning 
or interpretation assigned to symbols) 

• Meaning introduced by referencing to objects 

• Set of terms (axioms) to represent some world model 

• Terms in world model are true 

• All formulae are either true or false (in respect to the model)



FOPC: Elements
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FOPC: Examples
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Why is FOPC useful?

 58

• Tractable and well-understood 

• Flexible, easy to use 

• Sufficient for many (simple) applications 

• Inference (e.g.modus ponens) 

• Structure of language can be mapped onto FOPC 
expressions, e.g. verbs + subcategorization



But …
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FOPC: Problems
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• Vague information 

• Representation of belief 

• Representation of events and time 

• Discourse resolution



Problems with FOPC: Ways Out
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• Extensions to FOPC 

• Higher-order logics 

• Modal logics



Combining Syntax and Semantics
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• Syntax-driven semantic analysis 

• Grammar rules combine syntax and semantics 

• Semantics just an additional feature in feature-structure-
based grammar 

• Lexical items and rules are associated with logical forms 

• Semantic information is passed from children to parents 

• Need extension of FOPC to handle “incomplete” 
expressions:   -calculus and complex terms to build 
quasi-logical forms

λ



Examples
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Simplified Example Grammar
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Simplified Example Grammar
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Real Example: TR Discover by 
Thomson Reuters

 66

• Natural language questions over complex datasets 

• Combination of syntax and semantics 

• Based on context-free grammars 

• Use of FOPC to encode semantics



TR Discover: Sample Rules
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D. Song et al. “Natural Language Question Answering and Analytics for Diverse and 
Interlinked Datasets”. Proceedings of NAACL-HLT 2015.



Problems (Compositional Approach)
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• Natural language is not mathematics 

• Idioms 

• Ambiguity, e.g. quantifier scoping 

• Compositional approach does not tell us anything about 
individual meaning of words 

• Usual problems with symbolic approaches



Summary Meaning Representation
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• Expressing meaning of natural language is very 
difficult  

• FOPC can be a good approximation 

• Other logics are needed to express phenomena 
like time,beliefs etc. 

•    - calculus permits syntax-driven semantic analysisλ



Language and Complexity
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Language and Complexity: 
Motivation
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• Complexity is a major issue in computer science 

• The complexity of languages can be defined by the 
type of grammar they require 

• The Chomsky hierarchy defines four types of grammar 
(the higher the complexity the lower the number) 

• Certain constructions in languages require certain 
types of grammar 

• The types of grammar correspond to different types of 
automata 

• This allows reasoning about mathemetical complexity



Chomsky Hierarchy
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Grammars vs. Automata
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Grammars vs. Automata II
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Example 1: Right Linear Grammar
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Example 2: Context-Free Grammar
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Example 3: Context-Sensitive 
Grammar
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Natural Languages in the  
Chomsky Hierarchy
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• Are natural languages regular? 

• Not really as they often come with patterns that 
correspond to languages like 

• Centre-embedding, for example, causes languages to 
be non-regular:

‣ The student likes the Meetup. 

‣ The student the student likes likes the Meetup. 

‣ The student the student the student likes likes likes the Meetup. 

• Certain natural languages are not even context-free 

• Fair enough, this is all a bit hypothetical …



Complexity of Grammar Types
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• Measure the amount of work to decide whether a 
string is in a given language or not 

• Cost as a function of input length (n) 

• Worst case scenarios



Complexity of Parsing
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• So far we looked at the decision problem 

• Parsing is more complex 

• Example: 

• Number of possible parse trees for this grammar is 
exponential 

• Enumerating all possible parse trees therefore even 
for type 3 grammars exponential



Summary
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• Languages can be defined by means of grammars 
or automata 

• Parsers return tree structure(s) of some input given 
a grammar 

• First-order predicate calculus is a basis for simple 
meaning representation 

• Knowledge about grammar allows to reason 
about mathematical complexity 

• All this is a knowledge-based approach, i.e. at the 
other end of the spectrum of embeddings 



Reading
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• Jurafsky and Martin (2020), chapters 13-15 and 
Appendix C  

• The third edition focuses on the CKY parser only, the 
second edition has both Earley and CKY with running 
examples 

• Jurafsky and Martin (second edition), chapter 16 
discusses complexity 

• D. Song, F. Schilder, C. Smiley and C. Brew. “Natural 
Language Question Answering and Analytics for 
Diverse and Interlinked Datasets”. Proceedings of 
NAACL-HLT 2015. 

• See previous slide deck for links to parsers


